1. What is a parameter? What is a random variable?

2. What is a prior distribution? What is a posterior distribution? What does it mean for a prior distribution to be a conjugate prior?

3. Suppose you have a coin. Let X be the random variable indicating whether a flip of the coin is heads (1) or tails (0). You flip the coin a number of times and obtain the following outcomes: $D = (H, T, H, H, T, H, T, T, H)$. If we assume that the coin is modeled using a Bernoulli distribution

$$p(X = k) = \begin{cases} \theta & \text{if } k = 1 \\ 1 - \theta & \text{otherwise,} \end{cases}$$

what is the maximum likelihood estimate for θ?

4. Suppose we impose a Beta distribution

$$p(\theta \mid \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha-1}(1 - \theta)^{\beta-1}$$

(with $\alpha, \beta > 1$) as a prior distribution over the parameter θ. What is the posterior distribution?

5. We want to obtain an estimate for θ consistent with this prior. Specify two different mathematical approaches for obtaining an estimate for θ. Do they both give you the same results?

6. PLSA has a log-likelihood function

$$\log p(W \mid \theta, \phi) = \sum_{d=1}^{M} \sum_{i=1}^{[wd]} \log \left(\sum_{k=1}^{K} p(z_{d,i} = k \mid \theta_d)p(w_{d,i} \mid \phi_k) \right).$$

What are the parameters of the model? What are the random variables? How did you know?
7. Briefly explain why PLSA is not considered a “fully generative” model. Why does this matter, and how could we fix it?

8. Draw your modified model proposal using plate notation.

9. Suppose you have a document w_d. What is the posterior distribution of the latent variables for document w_d? Briefly describe why computing this distribution is intractable.

10. Variational inference uses a simpler, factorized distribution as an approximation to the posterior distribution of interest. In mean field variational inference, that distribution is chosen to be fully factorized. Draw a fully factorized variational distribution for LDA using plate notation and write its mathematical form as the distribution q. What are its parameters? What are its latent variables?

11. We want to find the setting of the parameters for this simpler distribution q that best approximate p. One way of quantifying the quality of this approximation is by using the KL-divergence. Write down the formula for $D(q \parallel p)$, the KL-divergence from p to q.

12. Write down the updating equations for the coordinate ascent algorithm to minimize the above KL-divergence equation.

13. Describe how to update the parameters ϕ_k after running the optimization algorithm for each document in the corpus.

14. *(shifting gears.)* The Dirichlet distribution is defined as

$$p(\theta \mid \alpha) = \frac{1}{B(\alpha)} \prod_{i=1}^{K} \theta^{\alpha_i - 1}$$

where $B(\alpha)$ is the multivariate beta function. Show that the Dirichlet distribution is the conjugate prior of the multinomial.

15. Prove the following:

$$\int \prod_{i=1}^{K} \theta^{n_i + \alpha_i - 1} d\theta = B(\alpha + n)$$
16. Using the fact that the Dirichlet is conjugate to the multinomial, perform the following integration to “collapse” out the prior over Θ in LDA:

$$ P(Z | \alpha) = \int P(\Theta | \alpha)P(Z | \Theta)d\Theta $$

17. Now, collapse the prior over Φ in a similar way:

$$ P(W | Z, \beta) = \int P(\Phi | \beta)P(W | Z, \Phi)d\Phi $$

18. Draw the collapsed model using plate notation, and write down its joint distribution as an equation.